3.268 \(\int \frac{\sqrt{\sec (c+d x)}}{\sqrt{1+\sec (c+d x)}} \, dx\)

Optimal. Leaf size=27 \[ \frac{\sqrt{2} \sinh ^{-1}\left (\frac{\tan (c+d x)}{\sec (c+d x)+1}\right )}{d} \]

[Out]

(Sqrt[2]*ArcSinh[Tan[c + d*x]/(1 + Sec[c + d*x])])/d

________________________________________________________________________________________

Rubi [A]  time = 0.0391462, antiderivative size = 27, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.087, Rules used = {3807, 215} \[ \frac{\sqrt{2} \sinh ^{-1}\left (\frac{\tan (c+d x)}{\sec (c+d x)+1}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Sec[c + d*x]]/Sqrt[1 + Sec[c + d*x]],x]

[Out]

(Sqrt[2]*ArcSinh[Tan[c + d*x]/(1 + Sec[c + d*x])])/d

Rule 3807

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> -Dist[(Sqrt[2
]*Sqrt[a])/(b*f), Subst[Int[1/Sqrt[1 + x^2], x], x, (b*Cot[e + f*x])/(a + b*Csc[e + f*x])], x] /; FreeQ[{a, b,
 d, e, f}, x] && EqQ[a^2 - b^2, 0] && EqQ[d - a/b, 0] && GtQ[a, 0]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rubi steps

\begin{align*} \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{1+\sec (c+d x)}} \, dx &=-\frac{\sqrt{2} \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+x^2}} \, dx,x,-\frac{\tan (c+d x)}{1+\sec (c+d x)}\right )}{d}\\ &=\frac{\sqrt{2} \sinh ^{-1}\left (\frac{\tan (c+d x)}{1+\sec (c+d x)}\right )}{d}\\ \end{align*}

Mathematica [A]  time = 0.0265921, size = 40, normalized size = 1.48 \[ \frac{2 \cos \left (\frac{1}{2} (c+d x)\right ) \sqrt{\frac{1}{\cos (c+d x)+1}} \tanh ^{-1}\left (\sin \left (\frac{1}{2} (c+d x)\right )\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[Sec[c + d*x]]/Sqrt[1 + Sec[c + d*x]],x]

[Out]

(2*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2]*Sqrt[(1 + Cos[c + d*x])^(-1)])/d

________________________________________________________________________________________

Maple [B]  time = 0.182, size = 95, normalized size = 3.5 \begin{align*}{\frac{\cos \left ( dx+c \right ) \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{2}-1 \right ) }{d \left ( \sin \left ( dx+c \right ) \right ) ^{2}}\sqrt{ \left ( \cos \left ( dx+c \right ) \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) +1}{\cos \left ( dx+c \right ) }}}\arctan \left ({\frac{\sin \left ( dx+c \right ) }{2}\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(1/2)/(1+sec(d*x+c))^(1/2),x)

[Out]

1/d*(1/cos(d*x+c))^(1/2)*cos(d*x+c)*((cos(d*x+c)+1)/cos(d*x+c))^(1/2)*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1)
)^(1/2))*(-2/(cos(d*x+c)+1))^(1/2)/sin(d*x+c)^2*(cos(d*x+c)^2-1)

________________________________________________________________________________________

Maxima [B]  time = 1.94075, size = 117, normalized size = 4.33 \begin{align*} \frac{\sqrt{2} \log \left (\cos \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right ) - \sqrt{2} \log \left (\cos \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 2 \, \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(1+sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/2*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(c
os(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))/d

________________________________________________________________________________________

Fricas [B]  time = 2.01411, size = 240, normalized size = 8.89 \begin{align*} \frac{\sqrt{2} \log \left (\frac{2 \, \sqrt{2} \sqrt{\frac{\cos \left (d x + c\right ) + 1}{\cos \left (d x + c\right )}} \sqrt{\cos \left (d x + c\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{2 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(1+sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(2)*log((2*sqrt(2)*sqrt((cos(d*x + c) + 1)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - cos(d*x + c
)^2 + 2*cos(d*x + c) + 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))/d

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\sec{\left (c + d x \right )}}}{\sqrt{\sec{\left (c + d x \right )} + 1}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(1/2)/(1+sec(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(sec(c + d*x))/sqrt(sec(c + d*x) + 1), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{\sec \left (d x + c\right )}}{\sqrt{\sec \left (d x + c\right ) + 1}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(1/2)/(1+sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(sec(d*x + c))/sqrt(sec(d*x + c) + 1), x)